我们研究了基于功能的新闻企业问题,其中决策者可以访问包括需求观察和外源特征组成的历史数据。在这种情况下,我们研究了功能选择,旨在得出具有改进样本外部性能的稀疏,可解释的模型。到目前为止,最新的方法利用正则化,这会惩罚所选特征的数量或解决方案向量的规范。作为替代方案,我们介绍了一种新型的双层编程公式。高级问题选择了一部分功能,这些功能将基于固定验证集的订购决策的样本外成本估算最小化。下层问题仅使用上层选择的功能,了解训练集中决策功能的最佳系数。我们为Bilevel程序提供了混合整数线性程序重新制定,可以通过标准优化求解器求解为最佳性。我们的计算实验表明,该方法准确地恢复了几百个观察结果的实例中的基础真相。相反,基于正则化的技术通常在功能恢复时失败,或者需要数千个观察值才能获得相似的准确性。关于样本外的概括,我们实现了改进或可比的成本绩效。
translated by 谷歌翻译
由于其损耗函数的无限性,经典的铰链损耗支撑矢量机(SVM)模型对异常观测值敏感。为了解决这个问题,最近的研究集中在非凸损失函数上,例如硬质量损失,该损失将恒定的罚款与任何错误分类或细边样品内的样本相关联。应用此损失函数可为关键应用带来急需的鲁棒性,但它也导致NP硬化模型,这使训练变得困难,因为当前的精确优化算法显示有限的可伸缩性,而启发式方法无法始终找到高质量的解决方案。在这种背景下,我们提出了新的整数编程策略,这些策略可显着提高我们将硬利润SVM模型培训为全球最优性的能力。我们引入了一种迭代采样和分解方法,其中使用较小的子问题来分离组合弯曲器的切割。这些切割量在分支和切割算法中的使用,可以更快地收敛到全球最佳。通过对经典基准数据集的大量数值分析,我们的解决方案算法首次求解了117个新数据集,以达到最佳性,并在基准最困难的数据集的平均最佳差距中降低了50%。
translated by 谷歌翻译
Can we take a recurrent neural network (RNN) trained to translate between languages and augment it to support a new natural language without retraining the model from scratch? Can we fix the faulty behavior of the RNN by replacing portions associated with the faulty behavior? Recent works on decomposing a fully connected neural network (FCNN) and convolutional neural network (CNN) into modules have shown the value of engineering deep models in this manner, which is standard in traditional SE but foreign for deep learning models. However, prior works focus on the image-based multiclass classification problems and cannot be applied to RNN due to (a) different layer structures, (b) loop structures, (c) different types of input-output architectures, and (d) usage of both nonlinear and logistic activation functions. In this work, we propose the first approach to decompose an RNN into modules. We study different types of RNNs, i.e., Vanilla, LSTM, and GRU. Further, we show how such RNN modules can be reused and replaced in various scenarios. We evaluate our approach against 5 canonical datasets (i.e., Math QA, Brown Corpus, Wiki-toxicity, Clinc OOS, and Tatoeba) and 4 model variants for each dataset. We found that decomposing a trained model has a small cost (Accuracy: -0.6%, BLEU score: +0.10%). Also, the decomposed modules can be reused and replaced without needing to retrain.
translated by 谷歌翻译
bump狩猎与样本空间中的发现有意义的数据子集,称为颠簸。这些传统上被认为是基础密度函数图中的模态或凹区域。我们根据概率密度的曲率功能定义抽象的凸起构建体。然后,我们探讨了涉及衍生物最高到二阶的几种替代特征。特别是,在多元案例中提出了适当的善良和加斯金斯原始凹凸凹凸的实施。此外,我们将探索性数据分析概念(如平均曲率和拉普拉斯人)在应用域中产生良好结果。我们的方法可以通过插件内核密度估计器来解决曲率功能的近似。我们提供了理论上的结果,以确保在Hausdorff距离内的凸界边界的渐近一致性,并具有负担得起的收敛速度。我们还提出了渐近有效且一致的置信区域边界曲率凸起。该理论通过NBA,MLB和NFL的数据集的体育分析中的几种用例来说明。我们得出的结论是,不同的曲率实例有效地结合了以产生洞察力的可视化。
translated by 谷歌翻译
我们报告了激进的量化策略,这些策略极大地加速了复发性神经网络传感器(RNN-T)的推理。我们使用4位整数表示进行权重和激活,并应用量化意识训练(QAT)来重新训练完整模型(声学编码器和语言模型)并实现近乎ISO的准确性。我们表明,根据网络本地属性量身定制的自定义量化方案对于在限制QAT的计算开销的同时,至关重要。密度比语言模型融合已显示出在RNN-T工作负载上的准确性提高,但严重增加了推理的计算成本。我们表明,我们的量化策略可以使用大型宽度宽度进行假设搜索,同时实现与流媒体兼容的运行时间,并且与完整的Precision模型相比,我们可以实现与流相兼容的运行时间和7.6 $ \ times $的完整模型压缩比。通过硬件仿真,我们估计端到端量化的RNN-T(包括LM Fusion)的3.4 $ \ times $从fp16到INT4,导致实时因子(RTF)为0.06。在NIST HUB5 2000,HUB5 2001和RT-03测试集中,我们保留了与LM Fusion相关的大部分收益,将平均WER提高了$ 1.5%。
translated by 谷歌翻译
由于需要快速原型制作和广泛的测试,模拟在自主驾驶中的作用变得越来越重要。基于物理的模拟使用涉及多个利益和优势,以合理的成本消除了对原型,驱动因素和脆弱道路使用者的风险。但是,有两个主要局限性。首先,众所周知的现实差距是指现实与模拟之间的差异,这阻止了模拟自主驾驶体验实现有效的现实性能。其次,缺乏有关真实代理商的行为的经验知识,包括备用驾驶员或乘客以及其他道路使用者,例如车辆,行人或骑自行车的人。代理仿真通常是根据实际数据进行确定性,随机概率或生成的预编程的,但它不代表与特定模拟方案相互作用的真实试剂的行为。在本文中,我们提出了一个初步框架,以实现真实试剂与模拟环境(包括自动驾驶汽车)之间的实时互动,并从多个视图中从模拟传感器数据中生成合成序列,这些视图可用于培训依赖行为模型的预测系统。我们的方法将沉浸式的虚拟现实和人类运动捕获系统与Carla模拟器进行自主驾驶。我们描述了提出的硬件和软件体系结构,并讨论所谓的行为差距或存在。我们提出了支持这种方法的潜力并讨论未来步骤的初步但有希望的结果。
translated by 谷歌翻译
切割选择是所有现代混合企业线性编程求解器中使用的子例程,其目标是选择诱导最佳求解器性能的生成的切割子集。这些求解器具有数百万个参数组合,因此是参数调整的出色候选者。剪切选择评分规则通常是权重是参数的不同测量值的加权总和。我们提出了一个混合企业线性程序的参数家族,以及无限许多家庭范围的有效削减。这些切割中的一些可以在应用后直接诱导整数最佳解决方案,而另一些剪切也无法诱导整数,即使应用了无限量。我们为特定的剪切选择规则显示,对参数空间的任何有限网格搜索都将始终错过所有参数值,这些参数值选择了无限量的我们的问题。我们提出了现有图形卷积神经网络设计的变体,以适应它们以学习切割选择规则参数。我们提出了选择削减的强化学习框架,并使用Miplib 2017上的上述框架训练我们的设计。我们的框架和设计表明,自适应切割选择确实在各种实例上确实提高了性能,但是找到一个描述这样一个功能的功能规则很困难。复制所有实验的代码可在https://github.com/opt-mucca/adaptive-cutsel-milp上获得。
translated by 谷歌翻译
深度神经网络(DNN)用于各种应用中。但是,与任何软件应用程序一样,基于DNN的应用程序受到错误的影响。以前的工作观察到DNN错误修复模式与传统错误修复模式不同。此外,由于具有多种选项来修复它们,因此由于具有多种选项的错误错误,那些错误模型是非微不足道的。为了支持开发人员在定位和修复错误中,我们提出DeepDiagnosis,一种定位故障的新型调试方法,报告错误症状,并提出了DNN程序的修复。在第一阶段,我们的技术监视培训模型,定期检查八种类型的错误条件。然后,在问题的情况下,它报告包含足够信息的消息来对模型执行可操作的维修。在评估中,我们通过GitHub和Stack Overflow彻底检查444型号-53现实世界,并由Autotrainer策划391。与UMLUAT和Deeplocalize相比,DeepDiagnosis提供卓越的准确性。我们的技术比Autotrainer更快,用于故障定位。结果表明,我们的方法可以支持其他类型的模型,而最先进的人才能够处理分类。我们的技术能够在培训期间报告在训练期间不明显作为数值错误的错误。此外,它可以提供用于修复的可操作的见解,而Deeplocalize只能在训练期间报告导致数值误差的故障。与其他方法相比,DeepDiagnosis表现出故障检测,错误本地化和症状的最佳能力。
translated by 谷歌翻译
最近关于神经象征性归纳逻辑编程的工作导致了有希望的方法,可以从嘈杂,现实世界数据中学习解释规则。虽然一些提议近似逻辑运算符,具有不同的逻辑,从模糊或实际值逻辑,无参数,从而无参数,从而减少它们适合数据的容量,其他方法仅基于逻辑摆动,使得难以解释学习的“规则”。在本文中,我们提出了与最近提出的逻辑神经网络(LNN)的学习规则。与其他人相比,LNN与经典布尔逻辑的强大连接,从而允许精确地解释学习规则,同时覆盆可以用基于梯度的优化训练的参数来有效地拟合数据。我们将LNN扩展以在一阶逻辑中引导规则。我们对标准基准测试任务的实验证实,LNN规则是高度可解释的,并且由于其灵活的参数化而可以实现可比或更高的准确性。
translated by 谷歌翻译